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Variational formulation of contact problems for systems of deformable bodies 

with nonlinear stress-strain relations~p is proposed and substantiated. It is 
assumed that at small deformations the body may separate in a part of the 
initial Contact surface, but increase of the contact areas is excluded, Layered 
fcamdations and laminated cylinders have these properties, hence the consid- 

ered system of bodies may be conveniently called laminated body. The 
problem is formulated as one of minimization of the total functional on a 
convex closed set of Sobolev’s functional space. Conditions of existence and 
uniqueness of solution of the variational problem are determined. An equiv- 
alent formulation in the form of a variational inequality is also proposed, 

The problem of separation of an elastic body from a rigid half-space (the problem 
of Signorini) was investigated in [l] using the variational method. The variational 
theory of contact between a rigid stamp and a nonlinearly elastic body was presented 

in [Z]. Variational formulation of the problem of contact between several deformable 
bodies with allowance for an initial gap between these was inv~tigated in [3], Known 
methods of investigation of laminated bodies [4--73 assumed a linear relation between 

stress and strain and depend to a considerable extent on the shape of layers. 

The variational method of investigation of laminated bodies is virtually independ- 
ent of the assumption of linearity, homogeneity, and isotropy, and unrelated to the 

shapeoflayers. Moreover no prior information on the actual areas of contact is requir- 

ed. Numerical methods, such as the method of finite elements [S] can be effective - 

ly used and substantiated, 

l. Statement of the problem, Letusconsiderasystemof N 
bodies occupying regions !& at,, . . ., QN of the gee-dime~ional space E, 

bounded by smooth surfaces ri, rz, . . ., TN. We denote by rmn the common 
boundary of bodies Q2, and f&, in the initial undeformed state, and assume that 

for each m the set rmn is nonempty for at least one n. We also assume that for 

small deformations the surfaces of actual contact between bodies (layers) does not 
increase over the initial contact areas. 

Let 2 = (Xi, 2s, z3) E E, u (2) = (ui (z), us (a), u3 (3)) be the vector 
of small displacements, and Eij (z), Oij (x) the tensors of small deformations and 

of stresses, respectively. 
Let us formulate the assumed conditions of contact of layers 52, and % at 

the boundary rmn . We denote by v (r) the unit vector external relative to 6t, 

and normal to lJrnn , and introduce the normal and tangential components of 
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displacement vector and of the stress vector on surface 

Uv = UiYiy (u,)i = Ui - UvYi, lS+Q = CJijYiYj, 

r mn 

(GJi = GijVj - GVVi 

In what follows the superscripts denote the oridinal number of the layer to which 
a particular quantity relates. 

The following conditions must be satisfied at points of surface rmn: 

C&(n) (22) = --a,(m) (Cr) = (TV (2) (1.1) 

o&n) (5) = - o&m) (Lx) = or (a$, Vx E rmn 

Three types of interaction between layers Q,,, and Q,, are considered on sur- 
face lYmn-: 

bonded layers 

UW) (5) = U(W) (x), V’z E rmn 

separation can take place but relative slippage of layers is excluded 

z&(m) (z) > U,(n) (z), UT(“) (x) = UT(n) (z) 

oV (x) < 0, (Jy (x) bp) (2) - 24n) (IL)] = 0, vx E rmn 
separation and relative slippage of layers may occur 

u,(m) (X) > UP (a-), csz (x) = 0 

ov (2) < 0, ov (x) lUv(m) (x) - ny(n) b)i = 0, vx E rmn 

(1.2) 

(1.3) 

(1.4) 

The conditions of form nv(m) (5) > u,P) (x) postulate mutual impenetrability 
of layers, and conditions (1.3) and (1.4) take into account that ov (x) = 0 when 

separation takes place at point x E rmn , and ov (x) < 0 applies in the oppos- 
ite case. 

It is assumed that surface 

rk - u rkm (k = I, 2,. . . , N) 
m 

may consist of three parts: rliU, rkx, rkc. On part r? we specify displace- 
ments and on rkX stresses 

u (x) = U(k) (z), Vx E rk” 

6ij (X) Vj (3) = Xi(k) (X)7 Vx E r.k-’ 

(1.5) 

(1.6) 

m part rkc layer Qk is subjected to the action of the stamp whose boundary 
is defined by the equation Yk (x) = 0, and outside the stamp Yk (x) > 0. 

on surface rkc we assume the following conditions [2]: 

Yk (x) + u (r) grad Yk (x) > 0, 0, (x) = 0 (1.7) 

ov (4 < o, ov (x) [Y, (z) + u (x) grad Yk (x)] = 0, Vx E rkc 

which determine the normal (frictionless) contact between the rigid and the deformed 

body. 
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Each layer is, furthermore, subjected to the action of mass forces 
5 E Stk, k = 1, 2, * . ., N. 

pi@ (x), 

The relation between stresses and strains is assumed nonlinear, and defined by [9] 

~ijzzehk (x) @6ij + 2pk (x) &ij -zpk (x) ok (xt &) Sij 

ii* eij = Eif - l/s 66ij, C?*L = ('13 f?ijf?ij)'rs 

(1.81) 

A > Ah (x) > h > 0, &f > pk (x) >, IL > 0 

We introduce the function of strain energy density 

(l-9) 

Function wk (3, s) is assumed to be such that the following conditions are sat- 
isfied: 

I) Wk (x, Ed is a convex function continuously differentiable with respect to 
et1 for any 5 E $Jk I consequently, the inequality 

Wk (Xv Es{) - Wk (X, Eij) > 

is satisfied [lo> 
2) there exists such c&k > 0 that 

g fi2 + pk (x) EijSij] > $k (x) rS@k (xt S) dS ) 
(1.11) 

0 

The indicated requ~ern~~ are satisfied when fimction #k (z, S} satisfies con- 
ditions 

0 < wk (x, S) < d (S@k (x, S)) / aS < ak < 1 

a@k (x, S) / dS > 0, vx E 62k 

The problem consists of the determination of the displacement vector Ui, and 
of tensors of strain Eif and stress oij that satisfy the equations of equilibrium, 
Cauchy’s relations, nonlinear formulas (I. 8), and the conditions (1.1) - (1.7) impos- 
ed on stresses and displacements. 

2. Variational formulation of the problem. We 
introduce for each layer ti3, the Sobolev’s space H1 (a,) of vector functions Uck) 
(a) = (%(kj (4, r&2 ck) (x), Ugtk) (x)) which has generalized first derivatives and 

is square summable. We determine in Hf (nk) the scalar product 

bet us consider the basic space H1 (61) consisting of vector functions u (4 
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determined on 9 = IJ Qh as follows: if z G Qk, then U (Z) = 7Jk) (x). 
AS the scalar product ink H’ (a) we take 

N 

(u, “)rP(o, = 2 (rl(k), u(k))H’(o,) (2.1) 
k=l 

For brevity of notation we shall use besides 
We impose on discontinuities along rmn 

@(a) also the symbol H. 
constraints which correspond to condi- 

tions defined in (1.2) - (1.4) and separate the following subsets of functions: 

VIcrnn) = {V 1 u E H, dm) (XT) = Y’“) (x), Vx E I’,,} 
VJmn) = {v 1 li E H, ZT,““) (x) > UP (x), uJrn) (x) = z@) tcr), 

vx E rm> 
V3!mn) = {u 1 u E H, z$“) (x) > ZJP (x), Vx E I’,,} 

We also separate the subsets of functions u E H that satisfy the kinematic con- 
ditions on rkc and specified on rh_” by conditions 

‘V,@! = {V ( V E H, Yk (X) + V (x) grad Yk (x) > 0, VX E rk”} 

vuck) = {V 1 v E H, V (x) = u(k) (x), vX E rk”} 

Each of the introduced sets is convex and closed. Finally, we construct the set 
V of vector functions that satisfy all conditions imposed on displacements 

v = n @JIL) 9 JQ”’ 9 JQ’ 
m,n 

where V(mn) is one of sets VI’““), V2(mn), V3(mn). Set V is convex and closed, 

being the intersection of a finite number of convex and closed sets. 

We present the formal derivation of the variational principle for displacements in 
the theory of laminated bodies, assuming that the requirements for regularity of func- 
tions are satisfied. Let u (x) E V be the actual displacements of the body Q and 
Eij (X), (Jij (X) the real values of the strain and stress tensors. We introduce the 

admissible displacements v (x) G v and related strains Eij’ (x) = 1/2 (Vi,j (x) + 

Vj,i (x)) 8 and consider the equilibrium of layer Qk, replacing the action of re- 

maining layers by corresponding forces on surface rkn (n = 1, 2, . . ., Iv). 

Applying to the integral 

S + iOij (Vi - %)I dS2 

‘k 
3 

the Ostrogradskii - Gauss formula and taking into account that for actual stresses equil- 
ibrium conditions are satisfied, we obtain 

‘k 
X 

rk ‘k 

(2.2) 

n~l,s_lo,(u, - 6 + UT@% - UT)1 dr - ~cuv(vv - u,)dr = 0 

(k = 1, 2, . . ., N) 
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For each of the three types of interaction of surface rmn (m, n = 1, 2, . . ., 
N) the following conditions are satisfied: 

a, (z) [V,,(n) (x) - ZLJn) (n) - uJm) (x) f GJ(m) (s)l > 0 (2.3) 

ot (2) [r@ (x> - zL$Q (2) - uz (m) (5) + uZ(m).(x)] = 0, V’r E rmn 

At points of surfaces rkc we have the relationships 

ov (5) [vv (5) - u, (z) 1 > 0, va: E rkC (k = 1, 2, . . ., N) (2.4) 

Adding(2.2)for k = 1, 2, . . ,, N and taking into account (1. lo), (2.3), 
and (2.4) we obtain 

iI [j. Wk (s, @YK? - [ .Ti;k’rr,dr -- p (I!“)LIidQ 1 ::; 
1 

n’ ‘X 
rk 

h, 

i [ 1 WA_ (z, Qj’) d? - ,JA x!,‘)[ijdr - f p$kb$i, , VZJEF/ 
k=l Qk 

/: h,; 

Thus the following variational principle has been proved: among all displace- 
ments u E V the minimum of functional 

J (v) 2 V2 B (v, 0) - II (v) - F(v) (2.5) 

B (u, V) = i [ [hk (x) 66 + 2pk (x) QiEij’I dQ 

k=l it, 

n (u) = i s 3pk (2$efi S@k (G s) ddQ 

k=l 52, 0 

F (u) = ~ [ ~ plk’vid~ + S Xlk’u,d’] 
k=l zlk 

rk 
X 

corresponds to actual displacements. 
on the basis of the proved above principle we formulate the variational problem 

inf,Ev J (4 (2.6) 
which may also be formulated as the equivalent problem of solving the variational 

inequality [ 111 

x (W(u), CJ - U) > F (u - u), Vu ES V (2.7) 
N 

x (Iv (u), u - u) = cs aW, (2, Fij! 
aeii (Eij' - &ii) d!Q 

k=l Q, 

Let us clarify the conditions under which the variational problem (2.6) has a 
meaning. We assume that Yk E Cl, Uitk) E H”’ (IT,“), Xitk) E ff-‘/’ (rk“), 
~$9 E ,!I,2 (Qk). factions Xilk) and pi’k’ may be piecewise continuous, and 

functions UtCh’) piecewise differentiable in respective regions. Then, using the 
trace theorem (123 and taking into account previous assumptions about functions 
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Wk (X7 &ii)7 it is possible to show that the integrals in (2.5) exist for all u E Ii 
and that set V is nonempty. 

The above reasoning is valid if the surface of each layer is smooth. However the 
variational problem can be formulated in all cases, if the functional J (u) is deter- 
minate on H and set V nonempty. Problems of existence of solutions are investig- 
ated in Sect. 3 with fairly general assumptions about surface regularity, introduced in 

v31. 

3, The existence and uniqueness of solutions of 
the variational problem. Let us consider the subset R of rigid dis- 

placements whose elements are such displacements v E H with which each layer 
moves as a rigid body 

R = fv 1 t, E H, B (v, u) = 0) 

Since the displacements of a body as a rigid entity are determined by not more 
than six parameters, the subset R is finite-dimensional. We separate in R the sub- 
set R* of neutral rigid displacements 

R* = {u 1 v E R, F (v) = 0) 

and represent the subset R as a direct sum of R* and of the orthogonal complement 

RI 
R = R* @ R1 

Let Q, Q', Q1 be operators of orthogonal projection of H onto R, R* and R1, 
respectively. We also introduce operators P = I - Q, P’ = I - Q’, where 

I is the identity operator. 
Since the admissible set v does not, generally, contain a zero element, hence 

a direct application of the Lions- Stampacchia theorem [ll], as was done in [3], is 
not possible here. In formulating conditions of solution existence we use the subsidiary 

set V, defined as follows: 

I/o = n Pn) r) V::’ n I$:’ 

Let 

_ _ 

Vci’;“= {v 1 i E Hlr v (3) grad YYk (z) > 0, vtls E rkc} 

I’,@(“’ = {u 1 u E H, u (LX) = 0, Vz E I’k”} 

u. E V satisfy the conditions 

UJrn) (2) = U,(“) (X), vx E rmn 

YYk (5) + u. (x) grad Yk (x) = 0, va: E rkc 

240 (x) = Uk) (x), vX E rk” (k, m, n = 1, 2, . . ., N) 

It is possible to show that for any u E v the element u - u,, belongs to 1’s 
and, conversely, for any w E V, the element w i- Ug belongs to I/. Note 

that V, contains a zero element. 
The set V. can be obtained from V by shifting by the element uo, hence 

that set is also convex and closed. 
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L e m m a 1. The functional B (v, u) is semicoercive, i.e. 

B (v, u) > c II Pv II 2, Vu E H (3.1) 

where c is some constant independent of u. The proof of semicoercivity of B (0, U) 
WaS given in [13] in the case of a single body, and can be directly extended to 
systems of bodies. 

L e m m a 2. If {un} is the minimizing sequence for the functional J (v) and 

F (Qu,) B 0, the sequence {II (u,)} is bounded. 

Proof. We represent J (u,) in the form 

J (uJ = Vz B (u,, u,) - U (u,) - F (Qu,) - F (Pa,) 

Using (1.11) and taking into account the conditions of the lemma, we obtain 

J (a,) > V, aB (u,,, a,,) - F (P%,) 

According to Lemma 1 there exists a p > 0 such that 

J (u,) >, B II J’s II - II F 1 II Pu, ll (3.2) 

Let the sequence {II (u,)} be unbounded. Then it is possible to separate in(r),} 
a sequence @nlc) such that II (u,,,) -++ 30 , as n - co. Since it is possible to 
finda y>O suchthat 

TI (v) < ‘lp B (v, v) < Y II Pv Hz, vu E H 

hence 11 Punk II -+ + 03, and from (3.2) follows that J (u,J - -I- 00, which means 
that sequence (u,} is not a minimizing one. 

L e m m a 3. The functional ‘/2 B (u, v) - II (v) is weakly lower semi- 
continuous on H. The proof is based on Kazimirov’s theorem on weak semicontinu- 

ity of integral functionals [14,15]. 

L e m m a 4. If for any r E V, fl R* there exists a - I” E I”,, n R*, 
the set P’ [V,] is weakly closed. 

P r o o f. Let r E Ii0 n R* . It can be shown that when u E V. , then u + r 

E vcl . But by the condition of lemma - r E V, n R*, hence u + (-r) E v,,. 
Any element v E P’ [ VO] is of the form v = u + (-r) , where P E VO n R*. This 
implies that P’[ VO] c IT,, and, consequently, P’ [v,,] is closed. Note that the set 
P’ I VOI is convex. The convexity and closure of P’[ V,] imply its weak closure [Ml. 

Theorem 1. If F(r),<0 forall rEV, /l R and F(r)=Uonly 
when -r E V, n R , the solution of variational problem (2.6) exists. 

P r o o f. We use the Fichera’s scheme of linear one-sided problems [13]. 
Let Jo = inf,=vJ (u) and {un} be the minimizing sequence. We introduce 

sequence {z,} as follows: z, = u, - %I and 2, E v,. The proof consists 

of two stages. First, we prove the possiblity of separating in sequence {P’z,} a 
bounded sequence and, then, establish the weak convergence of some subsequence 

{Us} to the element u E V for which J (u) = Jo. 
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We represent B (z,, 2,) in the form 

B (z,> z,) = 2J (u,) - 2J (u,,) + 2F (2,) - 2B (110, -n) im (3.3) 

XI (t&l) - 2rl (%i) 

Using the semicoercivity of B (u, u) (Lemma 1) and the boundedness of rI (u,) 
(Lemma Z), we obtain from (3.3) the inequality 

c 11 Pz, iI2 < ci + 2F (2,) - 2B (uo, z,) (3.4) 

Let {P’z,} not contain a bounded subsequence. It is, then, possible to construct 
sequence t, = llp’z, (1 such that lim,,,t, = + co. We introduce sequence 

WR = z, I t,. It follows from (3.4) that limn+ml( Pw, (( = 0. Taking into ac- 
count that I( P”w, II = 1 and ic,i is the projection operator normal to P, we ob- 
tain 

II &Lll 2 -t- II Q1% II2 = II P’% II ‘2 = 1 

Since {Qlw,} belongs to finite-dimensional subspace R, it is possible to ex- 
tract from {w,} such subsequence {w,,} that {Q1wnk} converges in norm H 
to some r E Ri, and 11 rjl = 1. Using the conditions of the theorem it is 
possible, as in ~131, to show that for fairly large n F (Q1 w,) < O.From (3.4) we 
have 

ct, 11 PW, 11~ < cl / t, + 2F (Pw,) + 2F (QP,> - 2% (h pd (3.5) 

We have a contradiction due to the assumption that {P’z,} does not contain a 
bounded subsequence. The left-hand side of (3.5) is nonnegative, while the right- 
hand side is strictly below zero commencing from some n. 

Since {P’z,,} contains a bounded subsequence, it is possible to separate from 
{zn} a subsequence {z,,} such that {P’z,,} weakly converges to some ele- 
ment P’z , and since according to Lemma 4 P’ IV,,], P’z E P’ [V,l is weak- 
ly closed. Taking into account the weak lower semicontinuity of functional ‘I2 B (V, 
V) - II (v) (Lemma 3). we obtain 

Jo = lim J (znk + u,,) = lim J (P’z,,,~ i- uo) > 

1~ J (P’znk + uo) > J (P’z + u,,) = J (u) > Jo, n * * 

from which we conclude that there exists an element u E I’ such that J (u) = 
inf oeJ (G. 

T h e o r e m 2. If functions Wk (z, Eij) (k = 1, 2, . . ., N) are strictly 
convex with respect to Eij, the solution of the variational problem (2.6) is deter- 
mined with an accuracy to neutral rigid displacements: if u is a solution of problem 
(2.6). any other solution w can be represented in the form w = u f r, where 

r E R*. 

p r o o f. If two soltd.ions u and u of the variational problem exist, each of 
them satisfy the variational inequality (2.7), hence 

X (W(u), u - u) > F (u - u), X (W(v), u - u) > F (u - u) 
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Adding the inequalities we obtain 

x (W (u) - W(u), u - u) > 0 

Let US assume that almost everywhere &‘if # ~~f. 
(5, &if) implies that 

The strict convexity of wk 

5 ““ka’,z’ ‘6) (Eij’ _ Ei,i) dQ 

*k 'k 

ti 

s [W, (z, ei;) - wk (z, Eij’)] dR > 1 awk~~~ “i”) (%i .- %j’jdQ 
"k 'k 

hence 
x (W (u) - W (u), v - u) < 0 

We have a contradiction related to the assumption that Eij’ # Eij. 
The solution u E v of the variational problem (2.6) satisfies the specified 

kinematicconditionsonsurfaces lYmn, rk“, rkc. Using the methods of variational 
inequalities [11] with additional assumptions on the existence of second derivatives 

of solution, it is possible to show that the solution also satisfies the equations of equili- 
brium and static conditions on surfaces rmn, rkx, r$ , in other words, the solu- 
tion of the variational problem yields a generalized solution of the problem stated in 
Sect. 1. 

Using the variational formulation we propose numerical methods of solving contact 
problems for laminated bodies. In conjunction with the method of finite elements 

[17] the variational problem (2.6) is reduced to that of minimizing functions of many 
variables on a convex closed subset of finite-dimensional space. The theorems on the 
existence and uniqueness of solution proved in Sect.3 are directly transferred to such 
problem of nonlinear programming. Use of the variational inequality (2.7) makes 
possible the reduction of the question of convergence of the finite element method in 
problems involving separation to the investigated problems of convergence in classical 

problems [ 171. 
Sets of programs in FORTRAN Language have been developed for solving two- and 

three-dimensional contact problems of determination the stress-strain state of layered 

foundations. The problem of nonlinear programming is carried out using the proposed 
in [S] variant of the method of possible directions [16]. Some of the known solutions 
of problems of linearly elastic foundations are used for estimating the errors of approx- 

imate solutions. The comparison of basic characteristics (contact pressure, dimens- 

ions of contact area) show a good agreement, also in solutions with singularities. 
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